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Objectives and Tasks

Objectives:
• Develop technology for on-board reforming diesel fuel for APU applications.
• Understand parameters that affect fuel processor performance, lifetime and 
durability.

Tasks:
• Carbon Formation Measurement of Diesel Fuel

• Equilibrium and component modeling
• Experimental carbon formation measurement

• Fuel Mixing
•Vaporization
• Direct liquid injection & fuel atomization

• Low water ‘Waterless’ Partial Oxidation of Diesel Fuel
• Start-up
• SOFC anode recycle
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Diesel Reforming System
Integration Issues

• BOP - Balance of plant
• Air Feed

• air compressor air
• engine exhaust

• Water
• Operation without water
• System water balance

• Reactor fuel feed 
• vaporization (without carbon formation)
• direct injection / atomization

• Reactor start-up / light-off
• Time
• Carbon formation

• Catalyst durability and activity / fuel sulfur
• Carbon formation
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Fuel Injection/Vaporization

• Fuel injection techniques into the reformer
• Pre-vaporization

• fuel pyrolysis and carbon formation
• Liquid injection

• limit residence time of fuel under carbon forming condition
• fuel atomization and distribution
• flash vaporization
• potential catalyst degradation

• Steam vaporization of fuel
• steam suppresses carbon formation
• requires steam – still can have feed issues



Carbon Formation Issues

• Avoid Fuel Processor Degradation due to Carbon Formation
• Operation in non-equilibrium Carbon formation regions

• Requires high temperatures / steam Content – limits efficiency (80 %)
• Promoted catalysts

• Start-up
• Rich start-up cannot avoid favorable carbon equilibrium regions
• Stoichiometric has high adiabatic temperature rise
• Water-less (Water not expected to be available at start-up)

• Operation for maximum efficiency
• low of O/C and S/C as possible (C limits)
• fuel conversion

• Diesel fuels
• carbon formation due to pyrolysis upon vaporization
• pre-ignition of fuel



Limiting Carbon Formation

• Mapping Carbon Equilibrium and Carbon Formation
• Temperature / Steam Content / Oxygen Content

• Fuel / Steam / Water mixing
• Fuel vaporization
• Direct fuel injection to oxidation

• Carbon Formation Mechanisms
• Hydrocarbon decomposition
• Accumulation of hydrocarbon on surface with polymer formation (polyaromatics)
• Pyrolytic carbon formed from olefins

Carbon (Soot) Formation
2CO ⇔ C + CO2   (Boudart Reaction)
CH4 ⇔ C + 2H2   (CH4 Decomposition)
CH4 → C2H6 + H2 → C2H4 + H2 → C2H2 + H2 → aromatics + H2 → soot
CnH2n → Cn + nH2



Catalyst Interaction with
Carbon Formation

• Catalysts Compositions
• Catalyst

• Pd >> Pt > Rh > Re > Ru, Ir (Methane decomposition studies)
• Support

• Oxygen donation
• YSZ, Ceria, La
• Pt/YSZ -Pt/Ceria
• Alkali promoters (K etc.)

• Bimetalics
• Pt/Re/Al2O3

(Re must be reduced - operation with H2O)
[Pt/Re/YSZ shows poor performance with H2O, good dry]



Modeling of Carbon Formation Disappearance
for Different Fuel Compositions
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Technical Results:
Carbon formation measurements

Results
• Partial oxidation of 

• odorless kerosene
• kerosene
• dodecane
• hexadecane

• Carbon formation 
monitoring by laser optics
• Carbon formation shown 
at low relative O/C ratios 
and temperature with 
kerosene (left)
• Demonstrated start-up 
with no water – carbon 
formation observed after ~ 
100 hrs of operation

Carbon formation monitoring with laser scattering
Odorless Kerosene; S/C = 1.0
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Fuel / Water co-vaporization Issues

Fuel/water inlet temperature

Reformer outlet temperature

Decrease in fuel/H2O inlet temperature (pool boiling or condensation) 
corresponds with increase in adiabatic temperature rise
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Partial Oxidation Stage Outlet Concentrations
(for similar oxygen conversion)

0

5

10

15

20

25

30

35

40

Iso-Octane Iso-Octane plus    
20 % Xylene

Dodecane

%
 O

ut
le

t C
on

ce
nt

ra
tio

n

H2+CO
Unconverted O2



Technical Progress Summary/Findings

• Demonstrated start-up with no water – carbon formation observed after ~ 100 hrs of 
operation
• Catalytic oxidation

• diesel components kinetically slower than gasoline components
• Carbon Formation

• Greater carbon formation with aromatics
• Diesel Fuel Components (Dodecane)

• Lower conversion / higher residence time required for conversion
• Laser & visual monitoring of carbon formation
• Fuel testing: Dodecane, hexadecane, kerosene, de-odorized kerosene
• Modeling: equilibrium, carbon formation, thermodynamic properties
• Pre-combustion

• Diesel fuels much more likely for pre-combustion
• kerosene has higher pre-combustion tendancies than de-odorized kerosene


